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1. S T A T E M E N T  O F  T H E  P R O B L E M  

The term "hereditaJry systems of neutral type" refers to systems whose rate of evolution may depend 
on previous states and rates of the system [1-3]. Such systems are used to simulate a variety of real 
processes, such as the unsteady motion of bodies in a continuous medium (the phenomenon of aero- 
auto-elasticity) [4], the control of turbines when there are hydro-shock effects [5], oscillations in long 
transmission lines [6], the interaction of populations [7, 8], and many others [3, 9]. 

One of the major problems in the field, commonly encountered in applications, arises in the study 
of stability and is as follows. Let R ~ be an n-dimensional real linear space equipped with some norm 
[ • I. Consider the following equation of neutral type 

k ( t ) = F ( t ,  xt,Jc,), t >~ t o (I.1) 

*,,, = v, = (1.2) 

with x(t) ~ R n a n d x t  = x ( t  + 0), where for any fixed t the argument 0 can take all values from --~ to 0, 
and the initial function ¥: (--% 0] ---> R" is absolutely continuous. It is assumed that the functional 
( t~ .¥ , tp)  -> F(t ,  ¥ .  ~,) is defined in [to, o,) x C(--~, 0] x L.(-**, 0], continuous in [to, **) x C(--**, 0] x 
L~'.{--~I( ,0]  for all N > 0 and, for any bounded set K C C(--~, 0] x L.(--**, 0], constants e > 0 and 
L > 0 exist such tha~t 

[F(t,~l,~0 I ) -  F(t,~2,~p2)[ ~< L[supo~o[Vl(0 ) -  ~2(0)[+ 

+ vrai sup_**<T~_ ¢ Iqh (x) - (P2 (x)[ ] + I vrai sup_t~,~<o[ q]l ( t )  -- ~0 2 ( t ) [  

where t i> t 0, I e [0, 1), (¥i, (Pi) e K (i = 1, 2), and L~(--~, 0] is the subspace of functions in L.(--~, 0] 
with finite LI(--~, 0].-norm whose L . - n o r m  is at most N. Under these assumptions one can establish 
(see [9]) a (local) exi:~stence and uniqueness theorem for the solution of problem (1.1), (1.2), where a 
solution is defined as an absolutely continuous function ofx  satisfying (1.1), (1.2) almost everywhere. 
As usual in stability theory, we assume without lose of generality that 

F(t ,  O, O) - O, t >i to (1.3) 

Def in i t ion .  T h e  tri~Sal solution of problem (1.1)-(1.3) is said to be 
1. stable if, for any e > 0, a 6(e) > 0 exists such that I x( t )  I < e, t >I to for any initial conditions that 

satisfy the inequality super01 ~(O) [ + vrai sup0~0 [ ~t(0) [ < ~i(e); 
2. asymptotically stable if it is stable and lim x( t )  = O, t ---> ~ for any initial conditions in some domain 

in C ( - %  0] x L.(--% 0]. 
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One way to study the stability of the trivial solution of system (1.1) is Lyapunov's second method. For 
delay systems, in which F( t ,  xt, Xt) --  F( t ,  xt) ,  general stability theorems were formulated [10] in terms of 
the existence of positive definite Lyapunov functionals which depend on xt; these theorems were sub- 
sequently modified in various directions [2, 3, 7-9, 11]. They can be extended without substantial changes 
to system (1.1). This formal extension, however, is of limited applicability, because the right-hand sides 
of the system also depend on previous values of the velocities xt- As a result, the general theorems of 
Lyapunov's second method are formulated for systems of neutral type (1.1) in terms of the existence 
of either degenerate functionals or functionals that depend on both xt and :it (see, for example, [3, 9]). 

Functionals of these kinds have actually been constructed for some specific systems, and stability 
conditions have been established with their help that depend directly on the characteristics of the 
equations themselves [2, 3, 7-9]. In addition, the form of the functionals enables one to detect a certain 
link between these functionals and Lyapunov functions for suitably chosen ordinary equations. 

In what follows we propose a procedure for constructing Lyapunov functionals V in the form V = 
1/1 + V2 for equations of neutral type (1.1); this procedure was considered in [12] for the special case 
of delay equation (1.1) (i.e. F( t ,  xt, Yet) --  F ( t ,  x t)  ). 

The procedure is as follows. 
1 .  Transform the right-hand side F of Eq. (1.1) so that it is expressed as the sum of two terms, of 

which the first depends only on the present state of the system, i.e. 

Jc(t) = F ( t , x ( t ) , J c ( t ) ) ,  F = F l ( t , x ( t ) ) +  F2(t, xt,Jq) 

F~(t,0) = 0, F2( t ,0 ,0)=  0 

(1.4) 

2. Delete F2 from the transformed equation to obtain an auxil iaryordinaryequationy(t)=Fl(t ,y(t)) ,  
and construct a Lyapunov function v(t ,  y )  for that equation. 

3.Replace the second argument o f v ( t , y )  by a certain function, depending on the transformation used 
in the first step. Specifically: if 

. d 
~2( t ,x , ,~ , )  = P3(t,x,,x,)+~ r4(t,x,) (1.5) 

then Vl ( t ,  x t )  = aJ(t, z ( t ) ) ,  where z = x ( t )  - F4(t ,  xt) .  But if the component F4 in representation (1.5) 
vanishes, then Vl( t ,  x t)  = v ( t , x ( t ) ) .  Now, adding to I/1 the component V2 = V2(t,  xt,  Yct) in such a way as 
to satisfy the requirements of some stability theorem for system (1.1), we obtain a functional V = 1/1 
+ V2. The use of the functional v(t ,  z ( t ) )  may necessitate a stability analysis for the trivial solution of 
the functional equation z ( t )  = O. 

We stress that the individual steps of the procedure may be implemented in more than one way--a  
feature that should be used to expand the stability domains obtained. Moreover, the procedure not 
only provides a unified formal approach to the construction of a series of already known functionals 
for equations of  neutral type, but also enables one to investigate the stability of specific systems. 

The individual steps of the procedure will be clarified by an example. Let f /denote  the right upper 
derivative of the functional V along trajectories of system (1.1). 

Example  1. Consider the scalar equation 

X ( t ) = - a x ( t ) + b ) c ( t - h ) ,  t>~O (1.6) 

where a, b, h >i 0 are given constants, I b I < 1. 
The fight-hand side of Eq. (1.6) is already expressed in the form of (1.3) when F1 = --ax(t), F2 = bx(t - h). We 

may therefore proceed to step 2. The auxiliary ordinary equation is~(t) = --ay(t), for which the Lyapunov function 
v may be taken as equal to v = y2. The realization of step 3 depends on the representation (1.5). 

Suppose that in (1.5) Fs = 0 and F4 = bx(t - h). Then V1 = (x(t) - bx(t  - h ) )  z. To construct the component V2 
of the functional V = V1 + V2, we calculate I5"1 

¢1 = - 2 a x ( t )  (x ( t )  - bx(t  - h))  = - 2a x 2 (t) + 2ab x ( t )  x ( t -  h) <~ (-2a + I abl ) x 2 (t) + I ablx 2 (t - h) 

Thus, if one puts 

v2 =l,a,I i x2(x) dx 
t - h  
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then V ~< 2(-a + Iab l) x2(t)- Hence 1;'is negative definite if 

~>0,  Ihl < l  (1.7) 

Since the functional Vas constructed is only non-negative, wc shall require in addition that the zero solution of 
the difference equation x(t) - bx(t - h) = 0 must be asymptotically stable. A necessary and sufficient condition for 
this is that I b I < 1. Thus, the functional Vyields (1.7) as asymptotic stability conditions for system (1.6). 

We will now consider another implementation of the procedure. Suppose that the auxiliary equation is p(t) = 
--ay(t), the Lyapunov :[unction for which may be taken as v(y) = l Y I, and in (1.5) we have F4 = 0, F 3 = bfc(t - h). 
Then 

Therefore 

~=l~<t)l ,  ~ ~<-alx(t) l+lbx(t-h)t  (1.8) 

' tbl v2=¢ J Ix<s>tds. c= 
,-n l - lbl  

Consequently, taking (1.8) and (1.9) into account and putting V = V1 + V2, we have 

-< -- a I ~ ( t ) l  +¢ I~(t)l + I b-~(t - h) l -c  [x(t - h)l = - a I x(t)l +c I.~(t)l-bclx(t - h)l 

(1.9) 

Replacing X(t) by the right-hand side of Eq. (1.6), we obtain 

*> ~ ~-a+lalc>lx(oI 

Hence, in view of (1.8) and (1.9),.it is obvious that when a > 0, I b I < 1/2 the functional V = V1 + 112 is positive 
definite and its derivative is negative definite. Thus, when the functionals (1.8) and (1.9) are used, the asymptotic 
stability conditions (1.7) for system (1.6) remain unchanged. 

We shall now consider  some classes of  systems (1.1), confining our  attention,  for  simplicity, to a few 
characterist ic representatives.  Note  that the aim of  this study is not  only to construct  stability conditions 
but  also to illustrate possible ways of  implementing the individual steps of  the procedure  and the 
functionals V thus constructed.  

2. L I N E A R  S Y S T E M S  

Using the p rocedure  just described, let us establish stability conditions for  the linear systems 

k ( t ) =  A o x ( t ) +  A i x ( t - h j ) +  A 2 ~ ( t - h 2 ) ,  t >>- O, x ~ R  n (2.1) 

whereAi  are constant  n x n matrices and h i >! 0 are constants. Let  I1" I1 denote  the matrix norm induced 
by the vector  no rm I" I in R n, i.e. IIA i II, = maxx I A i x  I, where  the maximum is evaluated over  a l lx  ~ R" 
such that  I x I = 1. Set t~ = II h i  II. We will now consider possible versions of  representat ions (1.4) and 
(1.5) and the resulting stability conditions and functionals V = I"1 + V2, assuming that  o~2 < 1. 

2.1. Define F1 = A0x, F2 = Aax( t  - ha) + A2Yc(t - h2), F4 = 0. Then  the auxiliary equat ion isy(t)  = 
A o y ( t ) ,  the Lyapunov function v for which may be taken as v = l Y I. This implies V1 = [ x ( t )  I. For  any 
norm I" I in ~ we have [13] 

d l x(t) I/dt = QIx(t), .k(t)] (2.2) 

where  the scalar funct ion Q[x, y] of  two independent  variables x, y E ~ is defined by 

Qlx, y]= lim l[Ix+hyl-lxl] 
h ~ O  + h 

(2.3) 

We recall, moreover ,  that  for  any square mat r ixA there  exists 

"t(A)=supxlxJ-'Qtx, ax], Ix l ,0 ,  x ~ a "  (2.4) 

where  T(A) is the logarithmic norm of  A [14]. It follows from (2.1)-(2.3) that  
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¢1 ~< lim ltlx+hyl-lxll 
h--,O ÷ h 

= Q [ x , ~ x l + l ~ ( t , x , , ~ , ) l  

Hence, by (2.4), we obtain the inequality 

q <~ , t (Ao)lxl+a, lx( t -h, ) l+a21x(t -h2) l  

To ensure that I:'is negative definite, we define 

v2 =(l-a2)-' a, Ixcs) lds+a2 x(s)lds 
t - h  I t 

In view of (2.5) and (2.6) 

ft ~ [ V ( ~ ) + a ~ ( 1 - a O - ' ] l x ( t ) l + a 2 ( i - a 2 ) - ' l i ( t ) l -  

- a ,a2 ( l  - a 2  ) - ' lx ( t -h , ) l -a~( l  - a 2  )-q~(t-h~)l  

By this inequality and the estimate implied by (2.1), we have 

I~(t)l ~ aolx(t)l+a,lx(t-hz)l+a2[:c(t-h~)l 
We finally conclude that P" ~< a3l x(t) l, where 

a3 = y ( A o ) +  ( 1 -  a2 ) -~ (a ,  + a o a 2 )  

We have thus shown that system (2.1) is asymptotically stable if 

Cl. 3 < 0 ,  0~ 2 < 1 

2.2. Let 

Ft =(A0 +AI) x, F4=0, F2= & 

t 

F 2 = - A! ~ Jc(s)ds + A2Jc(t - h 2) 
t-b t 

lim 1 h-,o, ~[Ix+hA0yl-lxl]+l~(t,x,,~,)l= 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

t - h  2 

t !  [k(s)[ ds-a2l/c(t-h2)l  ] 

Consequently 

¢2 = (l - hlal - a2)- l  [(hlat + a2) [ x(t)l-al 

t -~  

Hence, as in the case of (2.6), we obtain an expression for V2 

V2 =(1 -h l ° t l - a2 ) - I [  Oq t-h,i (s- t+hl) l&(s)[ds+a2 

~< Y(Ao+Ai)lx(t)l+a, ~lYc(s)lds+a2l~(t-h,2)l (2.9) 

Then the auxiliary equation is) = (Ao + A1)y(t) and the Lyapunov function x) = lY I, i.e. in accordance 
with the procedure and formulae (2.8) we must define 1:1 = Ix(t) I. Then, proceeding as for (2.5), we 
obtain 
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Replacing 18(t) I here by the right-hand side of the estimate 

IlAo+A,]lk(t)J+a, j l:c(s)Jds+%J:c(t-h2)[ 
t-h I 

and taking (2.9) into consideration, we conclude that V ~  < a4l x(t) l, where 

=y(a0 + A,)+[[ A0 + AI[ ( 1 - h l ~ l -  0t2)-I(h]0tl +a2)  

Thus, system (2.1) is asymptotically stable if 

l>h~al+a2, a4<O (2.10) 

Conditions (2.7) and (2.10) are not identical. 
Thus, for example, conditions (2.7) mean that A0 is a Hurwitz matrix; conditions (2.10), however, 

may be satisfied even when all the eigenvalues of A0 have positive real parts. It should also be noted 
that, under conditions (2.7), system (2.1) is stable for any delays hi, h2 ~> 0, while inequalities (2.10) 
impose certain restrictions on hi. 

Using other representations of the right-hand side of (2.1), one can deduce other stability conditions. 
To illustrate, here is one of them. 

2.3. Put 
d 

6--0, 6=-Tits4 (2.11) 
t 

F4=-a l  I Ix(s)las+A2x(t-n2) 
t-h I 

The auxiliary sysltem isp = (.40 + A1)y(t),  the Lyapunov function v(y) for which may be taken as the 
quadratic form v(y) = y'By, where the prime denotes transposition and B is a matrix such that 

(A o + A, )'B+ B(A o + A~ ) = - C (2.12) 

Let us assume thatA0 + AI is a Hurwitz matrix and the constant matrix C is positive definite. Then 
Eq. (2.12) has a uniique solution B > 0 for any given matrix C > 0. In accordance with the procedure, 
we must put Vi = 1)(z), z = x(t) - F4. Choose C = I, where I is the identity matrix; we will work with 
the Euclidean norm Ix I = (x'x) ~/2. Then, taking (2.11) and (2.12) into account, we have 

VI = x ' ( t ) (A  I + A 0)'Bz(t) + z'(t) B(A o + A i ) x(t) = -[x(t)[2-2x'( t)  (A o + A z )'B 

Thus Vz should be chosen in the form 

t 

V 2 = ] ( A  o +A,)nil , ,_I (s - t + hl ) lJc(s)12ds + ot2 t)s2 Ix(s)[ 2ds] 

The sum V = V1 + I/2 then satisfies an estimate V ~  < 0~51 x(t) [ 2, where a5 = -[1 - 211 (Ao + A1)B II (hl{Xl 
+ a2)]. 

Since the functional Vis only sign-definite, we must still require the trivial solution of the functional 
equation x(t) -F4(t:, xt) = 0 to be asymptotically stable. A sufficient condition to that end is hxcq + a2 
< 1. Consequently, system (2.1) will be asymptotically stable if 

ReZ(Ao+AI)<0, hja t + a  2 <!, ot 5 <0 (2.13) 

where Z(A 0 + A1) are the eigenvalues of the matrixA0 + A1 and Re Z are their real parts. 
We have thus proved the following theorem. 

Theorem 1. System (2.1) is asymptotically stable if one of conditions (2.7), (2.10) or (2.13) is 
satisfied. 
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3. THE STABILITY OF A P R E D A T O R - P R E Y  SYSTEM 

The interaction of two populations of densities Nl(t) and N2(t) has been simulated using the equations 

I 2 1 l ( l i ( t ) = N i ( t  ) r i -  ~ ( b o N j ( t - h i j ) - y i j l ( l j ( t - ' c i j ) )  , t >i 0 (3.1) 
j=l 

with given constants ~j and non-negative constants ri, bij, hij, xij, i , j  = 1, 2 [7]. The initial conditions for 
system (3.1) are 

Ni(0)=~0i(0), ~ti(0)=(0i(0), 0 ~< 0 

Let us assume that system (3.1) has a non-zero equilibrium position N~/> 0, defined by the relations 

2 
° =r~, i = 1 , 2  ~,  b l jN  j 

j=l 

We shall consider the question of the stability of a solution N~/. By [2, 9], N~/is asymptotically stable 
if the system, linearized with respect to the equilibrium position of N)'/, is asymptotically stable. 
Setting N i = m i + N O, we see that the linearized system is 

2 

rh i ( t )  + ~ [ Piflhi ( t  - "~ij ) + ailmi ( t  - hij )1 = 0 (3.2) 
j=l 

o 

Now let us use our procedure to establish stability conditions for system (3.2). Let 8(s) denote a 
function equal to zero for s ~< 0 and to unity for s > 0. We write the characteristic equation corresponding 
to (3.2) 

Z 2 = - ~  e - ~ [ z 2 d K 3 ( s ) + z d K 2 ( s ) + d g l ( s ) l  
0 

(3.3) 

where z is a complex variable, the integrals are understood in the Lebesgue-Stieltjes sense and we have 
defined 

K i ( s ) = a i j a 2 2 8 ( s - h i j - h 2 2 ) - a 1 2 a 2 ~ g ( s - h i 2 - h 2 1 ) ,  s ~ 0 

K 2 (a)  = a22~(s  - t122 ) - a22p! 18(s - Xll - 1122 ) + a 118(s - hi j ) + a j j p22g( s  - hi I - x22 ) - 

-Pl2a218($ - '~i2 - h21 ) - ai2p218(s  - / l l 2  - "c21 ) 

K S ( s )  = P22 8 ( s  - "C22) + P!I5( s - ~1| ) + PoIP22~( s - Zl! - "c22) + Pl2P2t6(  s - z12 - ~2t ) 

(3.4) 

Equation (3.3) is also the characteristic equation for the second-order system 

i~(t) = x~(t), 

Let us assume that 

x2 (t) = - 7 [J~2 (t - s) dK 3 (s) + x 2 (t - s) dK 2 (s) + x t (t - s) dK l (s)] 
0 

(3.5) 

I < l (3.6) 
o 

If this inequality holds, the necessary and sufficient conditions for the asymptotic stability of systems 
(3.2) and (3.5) are the same: Eq. (3.3) has no roots in the right-hand half-plane for Re z i> 0. It will 
therefore suffice to establish stability conditions for system (3.5), and to that end we will use the 
procedure described previously. 

Note that because of (3.4) all the kernels Ki(s )  have bounded moments. Put 
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"o : 7 ,'1 dx, o)l, 
o 

The integrals in (3.5) may be expressed as follows: 

~i) = 7 sidK) (s) 
o 

m t 

oS i X 2 ( '[) d 'c + [~02X2 (t) = d 7 Xl (l - $) dK2 ($) 
o 

7 x l ( t - ' s ) d K l ( S ) = 4 7  d K l ( s )  
o ~ o  

I 

(x - t + s) x 2 (X) dx - I~ I ix2 (t) + ~0ixl (t) = 
I - X  

(3.7) 

a -  , i - - - 7 , !  ax,(,) I dK,(, x2(,)d,+Po,X,(,). (3.8) 
t - s  0 t - s  

Using different representations (3.7) and (3.8), we obtain different transformed systems. 
We will consider one of them, since the others can be investigated similarly. Using (3.7) and (3.8), 

we write system (3.5) in the form 

Y q ( t ) = x 2 ( t ) ,  ~ ( t ) = - a x 2 ( t ) - b x l ( t )  

a = ~ o 2 - ~ l l ,  b=~oI  

(3.9) 

Based on (3.9), the auxiliary system is 

yl(t) = y2(t), Y2(t) =-aY2(t)-byt(t ) (3.10) 

The Lyapunov function for system (3.10) is given by 

• o = (2ab) -J[ (a  2 + b 2 + b) y~ + 2ayly2 + ( b ÷  I) y2 / ] 

Thus, in accordance 'with the procedure, we have V = V1 + 1/2, where 

V I = (2ab) -j [(a 2 + b 2 + b) x~ (t)  + 2 a x  I ( t)  z ( t )  + (b  + I) z 2 (t)] 

To construct the component 1/2, we calculate I;'1 along trajectories of system (3.9) 

("l = - x 2 ( t )  - x2 ( t )  - ( z ( t )  - x l ( t ) )  ( x 2 ( t ) +  a -t (b + I) x s (t)) 

(3.11) 

Note further that by (3.9) 

2 1 ( z ( t ) -  x 2 (t)) x 2 (t)l ~ q x~ (t) + J, q = (Xo3 + (xl2 + ct2j / 2 

J=' l  x~(t- . , ) laK3(s) l+ldK2(s)l  l x~(x)dx+ldK,  O)l ( x - t + s ) x ~ f x ) d x  
0 I - ,T,  I - s  

2 i ( z ( t ) - x 2 ( t ) ) x l ( t ) l  <~ q x ~ ( t ) +  J 

We must therefore define 

v2 = b +  I +_.__~a x~ (x) dx + I dg  2 (s)l ! (x -  t + s) x~ (x) dx + 
2a " -. t-s 

+[dK,(s)l i,_, ( x - t + S )  
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The sum V = V1 + V2 then satisfies the estimate 

v o ;,,,,(, 2a q - 2a q (3.12) 

The functional Vwe have constructed is only sign-definite. We must, therefore, still require the trivial 
solution of the functional equation z = 0 to be asymptotically stable. A sufficient condition for this to 
be true is q < 1. Hence, since (3.12) is negative definite, it follows that the equilibrium position N~/of 
system (3.1) is asymptotically stable if 

q=~03+~12+0~21 /2<1 ,  [~01 >0, 2([Io2-[~lj)( l -q)>(l+[~01)q (3.13) 

Note that at q = 0 conditions (3.13) are identical with the necessary and sufficient conditions for system 
(3.10) to be stable. Combining representations (3.7) and (3.8) differently, or choosing other Lyapunov 
functions for the auxiliary equation, one can derive other stability conditions for system (3.1). For 
example, the transformed system has the form (3.9) if 

a =-[~tl  , b = 1301 , z(t)=x2(t)+ (3.14) 

+T Ix2 (t - s) dK3 (s) - dg2 (s) xt (t - s) + dKi (s) i (x - t + s) x2 (x) dx] 
0 t-s 

With the a, b and z values of (3.14), the functional V1 is defined by (3.11) and the functional V2 is 

b + l + a  
V 2 = ~  

2a 

+ldK,< )l i 
I - - $  

Tit ' i dKa(s)[ I x22(x)dx+ldK2( s)l x ~ ( x ) d x +  
0L t-s t-s 

('t; - t2 + s)2 x2('C) d,tl 

Evaluating Valong trajectories of system (3.5), we get 

l x ,t,(oo2+,+,(2oo2+O21 +°03))+ ¢ <~ -x21(t)-x2(t)+-2 a 2 

1 (  b+l b+l+2a ) 
+2  x2(t) °~°2+°~21+ 2a ~21+ 2a °t°3 

Consequently, the conditions for the equilibrium position of system (3.1) to be stable are 

-I~l~ > O, ~ol > 0 

-21~11 >max[-I~llOto2 +(1+13°1)( 2°t°2 + a212 +°~°3/' 
-1311(°~°2+°t21)+(l+~°l)ct~ 14 ~01+1-2~11a0312 

4. N O N - L I N E A R  SYSTEMS 

We will now describe the application of the procedure to non-linear systems, establishing stability 
conditions for them, confining ourselves for simplicity to Eqs (1.1) of the form 

jc(t)=Al(t,x(t-hl))+ A2(t,k(t-h2)), t >! t O, x( t )~R n (4.1) 

with initial conditions (1.2). 
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Here h i >I 0 are constants andAl:  [to. oo) x U~' ~ Rn, Ai(t, O) = 0 (i = 1, 2) are continuous functions. 
Let D denote the set of absolutely continuous functions ¥: (-oo, 0] ~ n~ n such that I ¥ I < R for some 
R > 0. Let us assume that the functionAl (t ,x) is continuously differentiable with respect tox, and for 
some constants ai > 0 and any 9, • ~ D we have 

IlA2ft,*f-h2))ll ~< =d*C-h~)ll, =2<, 
II A, C,, 9 ( - h ,  )) - A, (,, W (-hi))II ~< = '  II 9 ( -h ,  ) - W<-h, )11 (4.2) 

Let f(t, x): [to, 00) [~' --> ~ '  denote the Jacobian, f(t, x) = i~ll(t, x)/igx, and ~e) the logarithmic norm 
of the matrix/. Let q'l = supn~f(t, x)), t /> to, x: Ix I ~< r. 

Theorem 2. Suppose that inequalities (4.2) hold and moreover 

T2 < O, Ot 2 +oqh~ < 1, T2 =T1 +Oq(Otlhl +Ot2)(1--Ot2 -oqhl)  -I (4.3) 

Then the trivial solution of system (4.1) is asymptotically stable. 

Proof. Let F 1 = Air(t, x(t)). This means that the auxiliary system has the formy(t) = Al(t ,y( t )) .  Le t  v 
= l Y I. Then in formula (1.4) we must put F3 = Al(t ,  x(t - hO) - A l ( t ,  x(t)) + A2(t, Yc(t - h2)), F4 = 0. 
Consequently, I:1 = Ix(t) I. Therefore, by (2.2) and (2.3) 

~< lira Z[Ix(t)+hA,(t, xft))l_lx(t)ll+lFsl (4.4) 
h~0 + h 

Note that 

A . x. E! l 

Hence, from (4.4), we obtain the inequality 

lim 1 I -Ix(t)l]+lF~l (4.5) 

In view of (2.3), (2.41) and (4.5), we have 

I 
f ~(f(t, sx(O))dslx(t)l+l F31 
0 

Now consider the (tractional V = V1(¥) + V2(W) in D, where 

(4.6) 

V 2 ( v ) f ( 1 - % - a ~ h t )  -~ (z~ x + h l ) l ~ ( x ) l d x +  

0 
+Or2 f 0 1 

-hl ,.] 

(4.7) 
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On the basis of (4.2) and (4.6) 

- h I 

(4.8) 

We now calculate V2(~) 

(Xl/) = (1 - ~2 - or,h, )-I [(O~lh I + C£ 2 )[ V(0)l_ct I ~ I ,(x)lax - ~,(-h~ )] + 

L -hi (4.9) 

+ a2) a (I V(0)I-I v(-h,)l )] 
Note that, by (4.1) and (4.2) 

Iv(o)l (4.10) 

Replacing I ~ (0) I in (4.9) by the right-hand side of (4.10) and taking note of (4.8), we obtain V(~) 
~< Y21 ¥(0) I. Thus, V is positive definite in D, admits of an infinitely small upper limit, and its total 
derivative is negative definite when conditions (4.2) and (4.3) hold. Consequently [3, 9], the trivial solution 
of system (4.1) is asymptotically stable. 

Remark 1. In applications of the procedure to equations of neutral type it is sometimes useful to iterate the 
derivative on the right once or more times. For example, define Va = I x(t) I for t ~> to + hv Then, as in (4.8) and 
(4.10), integrating once, we conclude that 

¢1(~) <- "tllx(t)l+c~zlx(t-h2 )l+~, i lx(x)ldx 
t-hi 

t-h 2 
~,,Ix(t)l÷azlx(t-h2)l÷~'-fh' Ix(x)ld~+~2 I Ix(x)ldx 

t - 2 h  I t - h  I - h  2 

Thus 

vz =or ds I Ix(s)lds+hj I Ix(x)ldx + 

Lt-2ht s t-h i .] 

+ ~ 2 ( l - a 2 ( l + ~ l h l ) ) -  1 t Ix(~)ld~+ I Ix(~)ld~a~ + a l ~  2 I 
t- t-h1 J t - ~ - ~  

t-h2 
ds $ I x(s)lds 

$ 

Setting V = V1 + V2, we obtain 17(x) <~ ~'31 x(t) I, where 

Y3 = YI + ot2hl +ct2 (1 - or2 (1 +°tlhl ))-I cq 

We have thus proved the following theorem. 

Theorem 3. The trivial solution of system (4.1) is asymptotically stable if inequalities (4.2) hold and Y3 < 0, ((~1hl 
+ 1 ) ~ 2 <  1. 

Remark 2. For some systems of type (1.1) one has V = Vv For example, suppose that the transformations (1.4) 
and (1.5) reduce Eq. (1.1) to the form ~t = Fs(t, z(t)), where z(t) = x(t) - F4(t, xt), F4(t, 0) = 0, Fs(t, 0) = 0. Then 
the auxiliary equation has the form p = Fs(t, y(t)), with Lyapunov function v(t, y). Consequently, V = V1 = .( t ,  
z(t)). Therefore, if the trivial solution of the equation ) = Fs(t, y(t)), is uniformly asymptotically stable and the 
trivial solution of the equation x(t) = F4(t, xt) is asymptotically stable, then the trivial solution of system (1.1) is 
also asymptotically stable. This was pointed out in [3]. 

Example 2. Consider a shunted power transmission line, as described by the equation [2] 

x ( t )=-g (x ( t ) )+bJc ( t -h ) ,  t ~  O, x ~ R ,  Ibl<l, g ( o ) = o  (4.11) 
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where g(x): R ~ R is a continuous function, b, h ~> 0 are given constants, and 

x g ( x ) > O ,  x ¢ O  (4.12) 

The stability of the trivial solution of (4.11) was studied in [2], where it was established that sufficient conditions 
for stability are provided by inequalities (4.12) and I b [ < 1/2. Ifg(x) is a linear function, i.e.g(x) = ax, these conditions 
reduce to a > 0, I b I < 1/2, i.e. they are not the same as (1.7), which were applied to the linear equation (1.6) in 
Example 1. Using the procedure proposed here, we will establish stability conditions for the trivial solution of system 
(4.11) that reduce to (1.7) in the linear case. The auxiliary ordinary equation for (4.11) has the form~(t) = -g(y(t)), 
a Lyapunov function fi~r which may be taken as 

Y 

u(Y)  = I g(s)  ds (4.13) 
0 

By (4.12), v(y) is positive definite and has an infinitesimal upper limit. On the basis of the procedure, V 1 = v(x(t)). 
Hence, via (4.11), it follows that V = I"1 + 1"2 where 

l t 

V2 = "2,-']'h ./2 (x) dx (4.14) 

One then finds that the derivative 1;'is given by 

~' = g(x( t ) )  [ - g ( x ( t ) )  + bx ( t  - h)] + / (./2 ( t )  - . / 2  ( t -  h)) 
2 

Replacing~(t) here by the right-hand side of Eq. (4.11), we obtain 

2V = - g 2 ( x ( t ) ) -  (i - b 2 ) ./2 ( t -  h) 

Thus, the asymptotic stability conditions are the inequalities (4.12) and I b [ < 1, which become (1.6) in the linear 
e a s e g ( x )  = 

Equation (4.11) with a non-linearity g(x) satisfying (4.12) is an equation of gradient type, for which application 
of the above procedure also yields stability conditions for n > 1. 

For example, consider the system 

. / ( t ) = - V G ( x ( t ) ) + B . / ( t - h ) ,  t >t t o . x ( t ) e R  n. G(0)=0  (4.15) 

where G(x): g~' --* R is a continuously differentiable function, B is a given constant matrix, h >~ O, VG denotes the 
gradient of G and 

As in (4.13) and (4.14), putting 

G(x) > 0, x ~ 0 (4.16) 

V ( x ) = G ( x )  +1- i . / ' ( s ) . / ( s )ds  
2 t - h  

we conclude that the trivial solution of system (4.15) is asymptotically stable if inequality (4.16) holds and II B l[ < 1. 

Remark  3. The procedure is also applicable to certain systems in an unsteady state. For example, consider the 
scalar equation 

. / ( t ) = - a ( t ) x ( t ) + b . / ( t - h ) ,  t >I t o (4.17) 

where a(t)  is a non-negative continuous function, b, h i> 0 are given constants, and II b II < 1. Then the auxiliary 
equation isy(t) = --a(t)v(t), for which a Lyapunov function v may be taken as v = l Y I. Thus, 1"1 = Ix(t) I. Therefore 

Ibl i I./(,)lds V2 = 

For V = V1 + 1/2 we have V <~ --a(t)lx(t) I + I b I(1 - I b I) -1 (I X(t) I - I~(t -h)[). Replacing Ix(t) I here, in accordance 
with (4.17), by I a(t) x(t) I + I bYc(t - h), we conclude, using [9], that system (4.17) is asymptotically stable if a(t) >t 
c > O, I b l < l/2. 
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Using a different function 

V. B. Ko lmanovsk i i  

t 

V=[x( t )+bx( t -h )]  2 +lbl J a(s+h)x2(s)ds  
t - h  

we arrive at the following asymptotic stability conditions 

2a(t) - Ib[(a( t )+a(t+h))  >~ c > 0 ,  Ib [< l  

These conditions reduce to the stability conditions (1.7) for system (1.6) with constant coefficients. 
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